Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space
نویسندگان
چکیده
Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملRetinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo.
Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. h...
متن کاملAllogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study
Stem cell strategies focused on replacement of RPE cells for the treatment of geographic atrophy are under intense investigation. Although the eye has long been considered immune privileged, there is limited information about the immune response to transplanted cells in the subretinal space of large animals. The purpose of this study was to evaluate the survival of allogenic induced pluripotent...
متن کاملSubretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model
OBJECTIVE To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. METHODS The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were sel...
متن کاملDevelopment of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium
Background Subretinal cell transplantation is a challenging surgical maneuver. This paper describes the preliminary findings of a new tissue injector for subretinal implantation of an ultrathin non-absorbable substrate seeded with human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). Methods Ultrathin Parylene-C substrates measuring 3.5 mm × 6.0 mm seeded with hESC-RPE (imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014